Code: EEPC1T3

I M. Tech-I Semester-Regular Examinations-March 2014

POWER SYSTEM OPERATION AND CONTROL (POWER SYSTEM CONTROL AND AUTOMATION)

Duration: 3 hours

Marks: 5x14=70

Answer any FIVE questions. All questions carry equal marks

- 1 a) What is unit commitment problem. Explain different constraints involved in unit commitment Problem. 7 M
 - b) Briefly explain the priority list scheme method for solving unit commitment problem. 7 M
- 2 a) Explain dynamic programming forward sweep approach of unit commitment problem with flow chart. Also give advantages of dynamic programming approach method. 7 M
 - b) Explain the advantages of dynamic programming method compared to priority list scheme method.

 Also explain the way to find the most economical combination of the units to meet a particular load demand by dynamic programming method.

 7 M
- 3 a) Explain speed governing system of single area load frequency control with neat sketch.

 7 M

b)	Draw the block diagram of isolated single area	load
r	frequency control system and also explain the	why
	frequency is kept constant in power system op	eration

7 M

- 4 a) Explain clearly what is the need of introducing Proportional and Integral control action for a single area load frequency control system. Draw the block diagram for Proportional plus Integral load frequency control.

 7 M
 - b) Two turbo Alternators rated for 110 MW and 210 MW have governor drop characteristics of 5 percent from no load to full load. They are connected in parallel to share a load of 250MW. Determine the load shared by each machine assuming free governor action.

 7 M
- 5 a) Draw the block diagram of load frequency control in two- area control system and explain.

 7 M
 - b) Derive an expression for steady state change of frequency and tie line power transfer of a two area power system.

 7 M
- 6 Explain the optimal load frequency control of two area load frequency control by considering the state variables for optimal parameter adjustment.

 14 M

7	a) Explain fuel scheduling by linear programming with flo	
	diagram.	5 M
	b) Explain the need for studying generation with limited energy.	4 M
	c) Briefly explain the composite generation production cost with equations.	5 M
8	a) What is the need for power pools and also explain the advantages of power pools.	7 M
	b) Explain interchange evaluation and how interchange evaluation is applied with unit commitment problem.	7 M